Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Flight of the Flibbins

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Betsy, from the Mount School in York, was able to work out how to start the process going:

The red pilot flies two red Flibbins to the new planet, two stay there and the red pilot flies back to Filbert.
Two Red Flibbins stay
The red pilot flies the other two red Flibbins to the new planet, who stay there, making a total of four, and the red pilot flies back to Filbert.
Two more Red Flibbins stay, four red Flibbins now on planet
 

Eleanor, from the Methodist Girls' School, Singapore, sent in this correct solution:

Let the blue Flibbins be B1, B2, B3, B4 and B5, and the red Flibbins be R1, R2, R3, R4 and R5, whereby B1 and R1 are a pair, B2 and R2 are a pair and so on so forth.

Firstly, as Betsy mentioned, 3 Flibbins should go on the first trip. Thus R1, R2 and R3 set off on the first trip.

R3 then becomes the pilot, and returns to planet Filbert to fetch R4 and R5. Therefore, R3, R4 and R5 reach the new planet where R1, and R2 are in.

R5 then becomes the pilot, and returns to fetch B5.

Upon reaching, B5 cannot stay on the new planet with R1, R2, R3, and R4 as B1, B2, B3 and B4 (respectively) will be jealous. Hence, B5 becomes the pilot, and returns to planet Filbert to fetch B3 and B4.

B3 and B4 arrive with B5. Thus, R1 and R2 have to leave on the spacecraft, to avoid B1 and B2 from becoming jealous.

B1, R1 and B2 then set off for the new planet, leaving R2 behind on planet Filbert. This is possible as B1 will not be jealous (as he is accompanying R1), and neither will B2 be jealous (as there are no blue Flibbins left on planet Filbert).

B2 then becomes the pilot, and returns to fetch R2.

Hence, in total, there are 11 trips, out of which 5 are return trips.

Alternatively, on the 5th trip, R5 could also fetch another blue Fibbin, other than B5. This is possible as B5 will not be jealous (because it is accompanying R5). However, if say R5 also fetched B4, on the 6th trip, both B4 and B5 will be pilots. Thus, this will not change the least amount of the total number of trips made, which is 11.
 

Joel of Raffles Junior College also gave a solution involving 11 journeys, together with a nice clear diagram.

Elanor's complete solution

 

Originally, it wasn't made clear that the spacecrat needed a pilot. Zac, Sammy and Robert, from Bentley Park College, Australia, sent in this solution to the version of the problem without a pilot:

We have solved this puzzle and this is how. By sending three red Flibbins on the 1st trip, three blue Flibbins on
the 2nd trip. On the 3rd trip we sent one red and one blue Flibbin and again the same on the 4th. In total 4 trips (plus return journeys) were needed.

1st= Red, Red, Red
2nd= Blue, Blue, Blue
3rd= Red, Blue
4th= Red, Blue


Thank you and well done to everyone who submitted solutions to this problem!

You may also like

Calendar Capers

Choose any three by three square of dates on a calendar page...

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo