Or search by topic
Ege, Burcu, Bana and Alara all sent in examples of numbers that they had experimented with. They found that their digits always added up to a multiple of nine, and that the numbers themselves were also divisible by nine. They concluded that there is a link between these two properties, so that if a number has digits that sum up to nine, it must be a multiple of nine. Here are some of their examples:
They also repeated the exercise for the set of numbers $1-8$ and found that the result was the same:
And for the set of numbers $0-9$:
Rohaan from Longbay Primary School explained why this always works for the sum of any numbers made from the digits $1-9$:
I think the reason behind this is when you add all the digits (from $1$ to $9$) the total is $45$. $45$ is divisible $9$ so whatever groups of numbers you make and add up must be divisible by $9$.
That's right, and the numbers $1-8$ add up to $36$, which is also a multiple of $9$, so the rule still works. For the sets of numbers $1-6$ and $1-5$, Ege and Banu found a similarly interesting result for multiples of $3$:
So there you have it! This rule only works for multiples of $3$ or $9$, but it makes it very quick and easy to find out whether or not a big number is divisible by $3$ or $9$ without using a calculator. Thank you for all your excellent solutions.
15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?