Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Journeying in Numberland

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Tom and Ben are in Numberland in the district called Addition.
They have a map which looks like this:
map

They are at point B and they begin their journey with ten points.
For every square they walk to the right on the map, they add five.
For every square they walk to the left on the map, they take away five.
If they go North (up on the map), they add two for every square, and if they go South (down on the map), they take away two for every square.


First they make these journeys:
 map

The blue line shows Tom's journey and the green line shows Ben's.
How many points do they have each when they reach E?
Do you notice anything?

Here is a different grid for you to make up some journeys of your own, beginning at B and ending at E.
map

You can download and print off this sheet which has two copies of the grid map.
What do you notice about your different journeys?
Can you explain your observations?


After they had explored in the district called Addition in Numberland, Tom and Ben go on to the district called Multiply.
Here they have a new map which looks like this (here are two copies of the map):
map


They explore here too. Each time they start at B with $10$ points and make their way to E. Try lots of journeys yourself.

What do you notice about the journeys this time?
Can you explain why this happens?

You may also like

Counting Counters

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Cuisenaire Squares

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Doplication

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo