Or search by topic
This problem offers a twist on the usual way of assessing students' knowledge of divisibility tests. Rather than asking students to check whether a number is divisible by 2, 3, 4, 5... students have to puzzle over the choices available as they are challenged to find the largest number that meets the necessary criteria. This low threshold high ceiling task has an accessible starting point, but then offers increasing levels of challenge as students can opt to work with multiples of larger and larger numbers..., and they may sometimes find that it is impossible to meet the criteria!
It may be tempting for students to suggest that whenever the interactivity provides two odd numbers, it will be impossible to create a three-digit multiple of 12. This is not the case; it is possible to create three-digit multiples of 12 with all other combinations of two odd numbers. Students could be asked to find which pairs of odd numbers can, and which cannot, create three-digit
multiples of 12.
How do you know if a number is a multiple of 3?
How do you know if a number is a multiple of 4?
How do you know if a number is a multiple of 6?
How do you know if a number is a multiple of 12?
How do you know you have found the biggest possible number?
Some students may benefit from starting with two-digit target numbers and focusing on multiples of 2, 5 and 10. This more accessible context will still require students to reason and justify. As they become more confident, they can move on to multiples of 20, 4, 3...
American Billions is an engaging extension activity which uses similar ideas to the ones met in this problem.
For slightly older students, Common Divisor offers an intriguing follow-up problem.
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!
Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.