Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Quadrilaterals

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Quadrilaterals


Quadrilaterals are shapes that have four straight sides.

Consider a circle with eight evenly-spaced dots round it.

How many DIFFERENT quadrilaterals can be made by joining the dots on the circle?

Can you work out the angles of all your quadrilaterals?

You might like to try using this interactive to record your ideas:

 

 

For a printable set of dotted circles to use with this resource click here.


Why do this problem?

This problem will help learners extend their knowledge of properties of quadrilaterals. It requires visualisation, a systematic approach and is a good context for generalisation and symbolic representation of findings.

Possible approach

To start with, you could pose the problem orally, asking children to imagine a circle with eight equally-spaced dots placed on its circumference. How many quadrilaterals do they think it might be possible to draw by joining four of the dots? Take a few suggestions and then ask how they think they could go about finding out.

You could use this interactivity or draw an eight-point circle on the board. Invite them each to imagine a quadrilateral on this circle. How would they describe their quadrilateral to someone else? Let the class offer some suggestions e.g. by numbering the dots and describing a quadrilateral by the numbers at its vertices.  Then return to the problem of the number of different quadrilaterals. Discuss ways in which they will be able to keep track of the quadrilaterals and how they will know they have them all. Some children may wish to draw quadrilaterals in a particular order, for example those with a side of $1$ first (i.e. adjacent pegs joined), then $2$ etc. Others may feel happy just to list the quadrilaterals as numbers. This sheet of blank eight-point circles may be useful. Encourage children to work in small groups to find the total number.

After a short time, you could stop the group and focus their attention on one of the quadrilaterals, using the interactivity. How could they work out the angles of this quadrilateral? At first it looks very difficult, but marking the centre of the circle with a dot (this can be done on the interactivity) makes it more accessible. Knowing the angles of each quadrilateral may help when it comes to checking there are no duplicates.

After giving the class more time to work, bring them together to share findings and systems, using the interactivity to aid visualisation. You may also want to discuss the angles of each quadrilateral and, in particular, how pairs went about calculating these angles.
 
You can read about one teacher's experience of using this task in the classroom on the NCETM website.

Key questions

How do you know your quadrilaterals are all different?
How do you know you have all the different quadrilaterals?

Possible extension

You could challenge pupils to think about whether they could predict the number of different quadrilaterals which are possible for different point circles. How would they go about finding out? (Here is a sheet of nine-point circles which may be useful.)

Possible support

Children could start by investigating the quadrilaterals on circles with smaller numbers of dots. These sheets might be useful: four peg, five peg, six peg, seven peg.

You may also like

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Cut and Make

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

Is a Square a Rectangle?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo