Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Reflecting Squarely

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem makes students think about the symmetries of many different shapes. There will be opportunities for instant feedback, and a challenge that will engage the whole class in an activity that offers choice and room for creativity. The students have to take responsibility for checking each other's work, since the teacher clearly can't be expected to anticipate all the possible combinations that might be generated.

Possible approach

These printable resources may be useful: Reflecting Squarely (worksheet),
                                                            Reflecting Squarely Grids. 

This problem could easily be used as it stands, as one of many activities on reflection symmetry. It can also be expanded, leading into a richer task:

As students enter, have copies of the three pieces available (on an OHP/blu-tacked to the board/on desks - card shapes or multilink (interlocking cubes)). Ask the class to find a few arrangements that are symmetrical. Keep a record of correct solutions as they are suggested.

Give students time to work individually/in pairs trying to find all the others. After a while students could be invited to draw new solutions on the board. Say that students have found only six arrangements, suggest that the set of three shapes is called a '6-ways-set'.

"Now it is time to 'beat the problem'. You can design your own three shapes, like the original, all made from squares on a square grid, with a total area of 10. Do you think we can find 3 shapes which can be put together symmetrically in more ways than the original problem? i.e. we're looking for a 7-ways-set, an 8-ways-set... (If anyone finds more symmetrical combinations for the original problem, then this task becomes even more challenging!)

"Between us, can we find a complete collection: a 0-ways-set, a 1-ways-set, a 2-ways-set... ?"
"When you have designed a set, and think you have found all the symmetrical arrangements, draw them clearly and stick your work to the board, for others to check." The board could be prepared with headings: 0-ways-sets, 1-ways-sets, 2-ways-sets... Ask all students to take responsibility for checking at least one displayed solution and confirm that it is in the right category.

Keep the work on display at the end of the lesson, so that students (from this class or another) can add to it over the next couple of weeks.

Key questions

Where can the mirror lines be?
Is there a systematic way of checking that you've found all the arrangements?

Possible support

Provide mirrors, and/or scissors so students can cut out their arrangement of shapes and fold them to check potential mirror lines.


Possible extension

Students might like to look at Andrei's solution and try to understand the logic behind his approach.

Encourage students to find three shapes that have very few possible arrangements (or none), and/or more than anything found so far.

 

You may also like

Frieze Patterns in Cast Iron

A gallery of beautiful photos of cast ironwork friezes in Australia with a mathematical discussion of the classification of frieze patterns.

The Frieze Tree

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Friezes

Some local pupils lost a geometric opportunity recently as they surveyed the cars in the car park. Did you know that car tyres, and the wheels that they on, are a rich source of geometry?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo