Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Shifting Times Tables

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Shifting Times Tables printable worksheet

The numbers in the four times table are
$$4, 8, 12, 16... 36, 40, 44... 100, 104, 108...$$
I could shift the four times table up by 3 and end up with
$$7, 11, 15, 19... 39, 43, 47... 103, 107, 111...$$
What do you notice about the differences between consecutive terms in each sequence?

The interactivity displays five numbers from a shifted times table.
On Levels 1 and 2 it will always display five consecutive terms from the shifted times table.
On Levels 3 and 4 it could display any five terms from the shifted times table.

Use the interactivity to generate some sets of five numbers.
Can you work out the times table and by how much it has been shifted?


Shifting Times Tables




? ? ? ? ?

Always enter the biggest times table it could be.
The shift is always less than the times table.

Table Shifted by


Once you are confident that you can work out the times table and the shift quite easily, here are some questions to consider:

What can you say if the numbers are all odd?
What about if they are all even?
Or a mixture of odd and even?

What can you say if the units digits are all identical?
What if there are only two different units digits?

What can you say if the difference between two numbers is prime?
What can you say if the difference between two numbers is composite (not prime)?

Can you explain how you worked out the table and shift each time, and why your method will always work?


You may also be interested in the other problems in our Dynamic Explorations  Feature.

Related Collections

  • From Particular to General
  • Working Systematically - Lower Secondary

You may also like

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Paving Paths

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo