Or search by topic
N | Total before wipeout | Wipeout Number |
3 | 6 | 2 |
5 | 15 | 3 |
7 | 28 | 4 |
9 | 45 | 5 |
11 | 66 | 6 |
We have a formula that the mean is $\frac{t_N - w}{N-1}$, where $t_N$ is the sum of the first $N$ integers and $w$ is the number that is wiped out.
Because $N$ is odd, $N - 1$ must be even. If we substitute this into our formula for the mean , and want to have only positive integers, the numerator must also be even (as odd $\div$ even does not generate a positive integer). This leaves you looking for an even numerator, and comes down to the combination of odd and even pairs in each triangular number.
For example: $t_3 = 1 + 2 + 3$, where $1 + 3$ gives an even number, so $2$ has to be the wipeout number. But $t_9 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9$, which gives an odd number, so $5$ is the wipeout number as there are 2 pairs of odd numbers, and two pairs of even numbers that sum together to make an even number divisible by $8$.
Although the wipeout numbers are consecutive, they are actually the median number of each of the sequences ($2$ is the median of $1,2,3$, etc.). The same logic applies: the wipeout number is the remainder.
Two students collected some data on the wingspan of bats, but each lost a measurement. Can you find the missing information?
When Kate ate a giant date, the average weight of the dates decreased. What was the weight of the date that Kate ate?