Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tom's Number

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Why do this problem?

This problem is one which uses many properties of numbers such as factors, multiples, and primes. It gives learners a chance to invent their own variations on the theme of finding a number that someone else has in mind.

Possible approach

You could start by playing "Twenty questions" with the whole group with such numbers as $56$ ($7 \times 8$), $71$ (prime number), $78$ ($13 \times 6$), $111$ ($3 \times 37$) and $322$ ($161 \times 2$) to bring up multiples, factors, prime and palendromic numbers. You could also discuss the various methods used to test whether a number is divisible by $2, 3, 9, 11$ etc. It would also be useful to talk about the best questions to ask first and those which are best left until later.


Invite learners to work in pairs on the actual problem - having it printed out would be helpful - so that they are able to talk through their ideas with a partner. Warn them that the plenary will focus on how they found the solution, not just the answer itself.


After a suitable length of time, bring the group together to discuss the various clues that were most helpful in reaching it. Did they use any tests for divisibility? Did they use their knowledge of prime numbers? At what point were they fairly certain of Tom's number?


Key questions

What do you know about Tom's number?
Can you estimate what it might be and then check?


Possible extension

Learners could choose numbers that they consider would be good to use in their own version of this game and then suggest some suitable questions to ask about them.

Possible support

Some learners might benefit from making a list of possible numbers, or criteria, as they read through the clues.





You may also like

Exploring Wild & Wonderful Number Patterns

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Sending Cards

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Dice and Spinner Numbers

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo