Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Exploring Diagonals

Age 11 to 16
  • Problem
  • Student Solutions
  • Teachers' Resources
We had some great solutions submitted to this problem. Well done to everyone who thought about it!

Adam from Sacred Heart School worked out the meaning of the purple number:


The purple number created, by changing the quadrilateral so it has a
different length and width, is calculated by how many squares the line
between 0,0 and the diagonally opposite corner of the quadrilateral passes
through.

e.g. if the coordinates of the opposite corner to 0,0 was 12,1 the purple
number would be 12 as it only passes through 12 squares. But the
coordinates were 2,3 the purple number would be 4.


Max and Jack from Hitchin Boys' School found a way to calculate the purple number at co-ordinates $(x,y)$:

You can calculate the purple number by adding the $x$ and $y$ values and then subtracting their highest common factor.

Several other people got this as a way to work out the purple number as well. Felix from the German American International School gave a really clear explanation of how he worked this out here.

Chenthuran from Chamblee Charter High School found some rectangles which would produce a purple number of $24$:

There are more than one set of dimensions of a rectangle for which the
purple number is $24$. Some are $24 \times1$, $24 \times 2$, $24 \times 3$, $24 \times 4$, $24 \times 6$, $24 \times 8$, $24 \times 12$, and $24 \times 24$.

Thank you everyone!


You may also like

Just Rolling Round

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Is There a Theorem?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Number Sandwiches

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo