Or search by topic
Published 2014 Revised 2022
This article, written by Jennie, Liz and Bernard, forms part of our Reasoning Feature, and complements the article Reasoning: The Journey from Novice to Expert.
Reasoning is fundamental to knowing and doing mathematics. We wonder how you would define the term? Some would call it systematic thinking. Reasoning enables children to make use of all their other mathematical skills and so reasoning could be thought of as the 'glue' which helps mathematics makes sense.
The second aim of the mathematics national curriculum in England (DfE, 2013) is that all pupils will:
In order to explore this aim, three questions need to be answered:
In this article, we discuss the first of these questions in depth and this leads to consideration of the second. We outline eight contexts in which we believe reasoning is required, using tasks from the NRICH site to illustrate each. This helps to highlight how reasoning is the 'glue' that helps mathematics make sense. It also helps us to begin to think about how we could support children
to develop their reasoning skills (question 3) once we have ascertained where these are needed and what they might look like. The article Reasoning: The Journey from Novice to Expert explores question 3 in depth.
1. When first encountering a new challenge
When faced with a mathematical challenge, reasoning helps us to make use of relevant prior knowledge such as how to tackle this 'type' of problem or a particular calculation method that could prove useful. The reasoning involved is complex and unique to the individual, as each of us has a different mix of past mathematical experiences.
2. When logical thinking is required
If you are not familiar with it, have a go at the Hundred Square challenge. In this activity, a hundred square has been printed on both sides of a piece of paper with one square directly behind the other. The idea is to find out what number is on the back of various chosen
numbers.
This activity demands logical thinking in order to convince ourselves (and others) which number is behind the given number. A solution might involve a chain of statements, which follow on from one another. For example, we received the following from Luke who describes his logic when finding out what is on the back of 23: