Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Overlaps

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Student Solutions

Overlaps printable sheet

 


Seven Regions

Place the digits $1$ to $7$, one in each region, so that the circles all have the same total.

 


Can you also show that:

 

 

 

  • you cannot have a circle total of $16$ with $4$ in the centre?
  • you cannot have circle totals greater than $19$ or less than $13$?
  • you cannot have anything other than $1$ in the centre for a circle total of $13$?



Five Rings

 


These five rings create nine regions, labelled $a$ to $i$ above. Using each of the digits $1$ to $9$ exactly once, can you place one number in each region so that the sum of the numbers within each ring is the same?

Can you find more than one solution?

Show that for any solution the sum of the numbers in the overlaps ($b$, $d$, $f$ and $h$) must be a multiple of $5$.

Using this, can you find a lower and an upper bound for the possible ring totals?

Is there a solution for every ring total between the lower and upper bound? 
If not, can you prove that no such solution exists?

 

 

 

 

 

 

If you enjoyed this problem, you may also like to take a look at Magic Letters.

With thanks to Don Steward, whose ideas formed the basis of this problem.


 

You may also like

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Where Can We Visit?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Prime Magic

Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo