Or search by topic
Term | 1 | 2 | 3 | 4 | 5 |
Area | 1 | 2 | 4 | 8 | 16 |
And they spotted that the $n^\text {th}$ term is equal to $2^{n-1}$.
The reason for this is because each trapezium is a similar shape to the one before. So, if we increase by scale factor $\sqrt2$ (due to the relative sizes of a right angled isosceles triangle), the area factor will increase by 2. Because $AF = SF^2$.
The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?
Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?
ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.