Or search by topic
This problem involves using practical equipment to approach a mathematical problem.
It challenges the usual misconception that all tetrahedra are regular.
It needs systematic thinking and visualisation and has some surprises in it - there are a few examples that are quite unexpected.
It is hard to be convinced that you have found all the possibilities and difficult to make the distinction between the two tetrahedra that are mirror images of one another.
Can you number the vertices, edges and faces of a tetrahedron so that the number on each edge is the mean of the numbers on the adjacent vertices and the mean of the numbers on the adjacent faces?
Each of these solids is made up with 3 squares and a triangle around each vertex. Each has a total of 18 square faces and 8 faces that are equilateral triangles. How many faces, edges and vertices does each solid have?
This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.