Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Double Digit

Age 11 to 14
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Everyone said correctly that the answer will always be $11$. Many of you also managed to justify this using algebra. The first to do sowas Stephen from Singapore International School. His solution went along the following lines:

Let single numbers $x$ and $y$ represent our digits. Then our two digit numbers will be $10x + y$ and $10y + x$.

For example, if $x=1$ and $y=2$, our two digit numbers are $12 = 10\times 1 + 2$ and $21 = 10\times 2 + 1$. Now $12 + 21 = 10\times 1 + 2 + 10\times 2 + 1 = 11\times 1 + 11\times 2$. So $$\frac{12+21}{1+2} = \frac{11\times 1 + 11\times 2}{1+2} = \frac{11\times 3}{3} = 11$$ In general, the sum of our two digit numbers will be $(10x + y) + (10y + x) = 11x +11y$ and this sum divided by $x+y$ will be 11.

Patrick from Woodbridge School extended the problem to three digits in the following way:

Suppose we pick three digits, say $2$, $3$ and $7$. Then we construct the six three digit numbers from our digits - in our case $237$, $273$, $327$, $372$, $723$ and $732$. If we add these numbers together and divide by $2+3+7$ we get $222$. Try this with your own set of digits. Can you explain what is happening?

Patrick then extended the problem in the same way to four digits. Investigate further.

You may also like

Repeaters

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Big Powers

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Legs Eleven

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo