Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Legs Eleven

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Legs Eleven printable sheet


Take any four-digit number.
Create a second number by moving the first digit to the 'back of the queue' and moving the rest along. 
Now add your two numbers.
I predict your answer will be a multiple of 11...


animation showing 5238 + 2385 = 7623 


Try it a few times. Is the answer always a multiple of $11$?
Can you explain why?

Click below to see what Samira noticed:


"I started with 5 thousands, 2 hundreds, 3 tens and 8 units.
After I moved the digits along, my new number had 2 thousands, 3 hundreds, 8 tens and 5 units. 

I wonder if this can help me explain what's happening?"


Click below to see what Jay noticed:


"I picked 1000 as my first number, so my second number was 0001 and the total was 1001.
I know 1001 is a multiple of 11 because it is 1100-99, and 1100 and 99 are both multiples of 11."
 


Do these observations help you to explain what's going on?

What if you start with a three-digit number?
Or a five-digit number?
Or a six-digit number?
Or a 38-digit numbers ... ?

Can you prove your findings?

You may be interested in this article on Divisibility Tests.

Click here for a poster of this problem.

 

You may also like

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Counting Factors

Is there an efficient way to work out how many factors a large number has?

Repeaters

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo