Or search by topic
Name | Number | Sum | 11 times table |
Geon | 3412 | 3412 + 4123 | 7535 = 685$\times$11 |
Jun | 1000 | 1000 + 0001 | 1001 = 91$\times$11 |
Mahnoor | 3621 2163 |
3621 + 6213 2163 + 1632 |
9834 = 894$\times$11 3795 = 345$\times$11 |
Yusuf, Shafi, Adam | 97685437 | 97685437 + 76854379 | 174539816 = 15867256$\times$11 |
Helen | 34 826 |
34 + 43 826 + 268 |
77 = 7$\times$11 1094 is not divisible by 11 |
Nabiha | 38 5463 832596 |
38 + 83 5463 + 4635 832596 + 325968 |
121 = 11$\times$11 10098 = 918$\times$11 1158564 = 105324$\times$11 |
Aadit, Nicole, Jedi | 6953 3484 9876 3527 4567 1000 |
6953 + 9536 3483 + 4843 9876 + 8769 3527 + 5273 4567 + 5674 1000 + 1 |
16489 = 1499$\times$11 8827 = 757$\times$11 18645 = 1695$\times$11 8800 = 800$\times$11 10241 = 931$\times$11 1001 = 91$\times$11 |
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!
Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.