Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Can You Make 100?

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Why do this problem?

This problem offers great opportunities for mental arithmetic and estimation. It can also be used as an opening to discussing the order of operations.

 

 

Possible approach

 

Display the numbers $1$ - $9$ on the board and ask students to add them up. (They might do this in any order, perhaps noticing that pairs from either end add to $10$.) As they explain their working, record it in order on the board, for example:

 

$1+ 9 +2 + 8 + 3 + 7 + 4 + 6 + 5 = 45$

 

 

Ask if they can suggest a way to make the answer bigger, but still only using the numbers $1$ - $9$. Again, record the calculations on the board in the order that the children say them. This is likely to involve a multiplication sign. Ask if they can make it even bigger. Again, record the calculations.

 

 

Then offer the problem. Allow some time for students to work, possibly in pairs, and provide calculators for them to use to check their arithmetic if necessary. Provide a central wall space for students to record their solutions. This would make an ideal 'simmering' activity that could go on for a week or more. (See the extension questions below.)

 

 

Key questions

 

How close can you get to 100 with just adding?
What operation might you use to make the result bigger?
Which sorts of calculations make the most difference to the total?
Which numbers less than $100$ is it possible to make?
What other questions can you suggest?

 

Possible support

The numbers could be written on separate pices of paper, together with several $+$, $-$, $\times$ and $\div$ signs. Being able to rearrange the numbers can sometimes help to see patterns or number bonds that help with calculations. These printed digit and operation cards could also be used. And whilst the problem offers great opportunities for mental arithmetic and estimation, pupils who are less confident at these could use a calculator. This would help to support their estimation skills and include them in a whole class activity.


Possible extension

An additional challenge would be for the students to decide on their own target number and see if they can make it using $1$ - $9$.

 

 

You may also like

Whole Numbers Only

Can you work out how many of each kind of pencil this student bought?

Squaring the Circle

Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make an estimate.

Interstellar

What number could replace * so that */5 is between 3 and 4?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo