Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Angles in Three Squares

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Why do this problem?

Geometry sometimes offers surprising results that can be proved very elegantly. This is a great example of how finding the right representation (in this case a diagram) allows a problem to be solved more easily.


Possible approach

Show students the image:
  
Invite them to draw it and measure angles a, b and c to verify that a+b=c, and give them some time to think about how they might prove it. There are many methods that use advanced techniques such as trigonometry or vectors, but there is also an elegant geometric method. Once they have had time to engage with the difficulty of the problem, show them the following image:


"Can you find angles in the diagram that are the same size as angles a and b?"
"What can you say about the angle at B?"
"What can you say about the lengths AB and BC?"
"What can you deduce about the angles at A and C?"


Possible extension

Students may be interested to read 8 Methods for Three by One which outlines a number of different methods for this proof using more advanced mathematics.


Possible support

Angles in Polygons Short Problems worksheets offer some more straightforward examples of geometrical reasoning problems.


You may also like

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Darts and Kites

Explore the geometry of these dart and kite shapes!

No Right Angle Here

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo