Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Angles in Three Squares

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Well done to Vid from Osnovna Å¡ola Loka ÄŒrnomelj in Slovenia, who sent us the following solution to the problem:

Angle $c = 45^\circ$ because it is the angle between the diagonal and the side of a square. To prove that $a+b=c$, I shall begin by adding points to the diagram to help with naming angles:


Now we can find several angles:
  • Firstly, $\angle CAE = a$ and $\angle BAD = b$.
  • Since $DC$ is parallel to $AE$, by alternate angles, we know that $\angle DCA = \angle CAE$.
  • Next, we can see that $\angle BCD = b$.
  • Similarly, $\angle ABF = \angle CBG = b$.
  • Since $\angle BHC$ is a right angle and the sum of angles in a triangle is $180^\circ$, then we have that $\angle CBH = 180^\circ - 90^\circ - b = 90^\circ - b$.
  • Hence, we have that $\angle BCA = a + b$.
  • In $\triangle ABC$, the line segments $AB$ and $BC$ have equal length, so we have that $\triangle ABC$ is isosceles. Therefore, $\angle BAC = \angle BCA = a+b$.

Therefore, adding the angles of $\triangle ABC$ together, we have: $$\begin{align}\angle ABC + \angle BAC + \angle ACB &= 180^\circ \\
((90^\circ - b) + b) + (a + b) + (a + b) &= 180^\circ \\
90^\circ + (a + b) + (a + b) &= 180^\circ\\
90^\circ + 2(a + b) &= 180^\circ\\
2(a + b) &= 180^\circ - 90^\circ\\
2(a + b) &= 90^\circ\\
a + b &= \frac{90^\circ}{2}\\
a + b &= 45^\circ\end{align}$$
Therefore, since $c = 45^\circ$, we have that $a + b = c$. 

You may also like

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Darts and Kites

Explore the geometry of these dart and kite shapes!

No Right Angle Here

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo