Or search by topic
Published 2016 Revised 2019
Quality provision in the early years encourages children to pose their own problems, with a range of possible solutions. For instance, with construction materials, children can decide to make a car for collaborative play, make houses for the three bears or make an abstract pattern. More flexible resources can
create more mathematical opportunities, prompting children to choose shapes according to their properties and to explore different combinations and arrangements. Sometimes it is hard to identify whether children are engaged in problem solving, but if you are aware of the potential mathematical learning in an activity, then observing children can reveal their decision making, such as when children
choose certain blocks before they start building or dismantle a construction and use a more efficient arrangement. Discussion with a child can help them to articulate why they chose certain shapes or changed their minds.
This implies that, in a familiar context with a clear purpose, such as sharing fruit, children will be able to deal creatively with more mathematically demanding challenges, perhaps involving remainders and fractions, but in an unfamiliar context they may only demonstrate basic skills. Carr et al (1994) also suggest
that children need to feel in control of the outcome, or they may just look for the right answer to please the teacher. Familiar contexts and purposes do not have to be 'real': young children will readily engage with toys' dilemmas and be outraged by pirate panda's selfishness in Maths Story Time. This
suggests that young children need problems:
Surprisingly, the quickest solution, of taking two from each, was used by some children who were not yet counting and would not have been considered mathematically proficient. The last strategy of crumbling the biscuits was not anticipated by researchers, who reluctantly acknowledged it was a successful solution
(and indicated some creative problem solving!). The researchers also concluded that some children were prompted by this problem to reveal an intuitive understanding of ratio, as they could just 'see' how to split six biscuits in the ratio 2:1; they also seemed to recognise that this would result in three equal numbers. This problem therefore engages children in a range of mathematical skills and
ideas, such as counting, subitising, comparing and recognising numerical relationships. It is an educationally useful problem because it can be tackled successfully by all children, whatever their mathematical proficiency, and gives experience of adapting a range of mathematical knowledge in the stages of problem solving, by devising a strategy and checking that a solution had been reached.
As identified in Jennie Pennant's article, Developing Excellence in Problem Solving with Young Learners, the stages of problem solving include 'getting started', 'working on the problem', 'digging deeper' and 'reflecting'. Of course, some children may just rush towards a solution
without going through preliminary or reflective stages. Deloache and Brown (1987) observed the following levels of sophistication in approaches, with two to three year olds ordering nesting cups and four to seven year olds making a train-track circuit: