Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Another Triangle in a Triangle

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem offers students the opportunity to discover and prove a result about triangles divided into smaller areas. We hope there will be a moment of surprise leading to curiosity as students desire to explain the result. Students might tackle the problem using ratios and similar triangles, or they might use it to practise manipulating vectors.   

This would be a good problem for students to explore using dynamic geometry software such as GeoGebra.

Possible approach

Students may benefit from working on Triangle in a Triangle and Areas and Ratios before tackling this problem.
 
Begin by sharing the diagram above and explaining to students how it was created - each line joins a vertex to a point $\frac13$ of the way along the opposite side. Ask students to guess what fraction of the area is shaded green - they may wish to suggest a lower and upper bound rather than guessing an exact amount.

Then invite them to consider ways of finding the exact area. 

Below are the series of hints from the problem, which you could offer to students as they are working.


The base of triangle $a+f+e$ is $\tfrac{1}{3}$ of the base of the whole triangle.

Can you use this to work out the area of $a+f+e$ as a fraction of the whole triangle?

What about $a+b+c$ and $c+d+e$?


We have three triangles, each with an area of $\tfrac{1}{3}$ of the whole triangle.

But none of these tell us anything about $g$.


But we do know that $a$, $b$, $c$, $d$, $e$, $f$ and $g$ together make the whole triangle!

Can we combine all this to find an expression for $g$ in terms of other areas?


It would be useful to know the areas of the little blue triangles...

We know that:
  • $a$ has the same height as triangle $ECB$.
  • Triangle $ECB$ is $\tfrac{1}{3}$ of the whole triangle

If we can find the length $EH$ as a fraction of $HB$, we could work out the area of the blue triangle...


 


Sometimes it helps to add in an extra line...



Can you find some similar triangles in this diagram?

How does $EJ$ compare with $AF$?

How does $EJ$ compare with $BF$

How does $EH$ compare with $HB$?

How does $EH$ compare with $EB$?

 

Alternatively, if you want your students to focus on vector methods, you could share a diagram such as the one below, in which vectors $\bf{x}$ and $\bf{y}$ have been defined such that $\overrightarrow{AC}=3\bf{x}$ and $\overrightarrow{AB}=3\bf{y}$.
 
 
You could share these key questions:
Can you express $\overrightarrow{DC}$ in terms of $\bf{x}$ and $\bf{y}$?
Can you express $\overrightarrow{BE}$in terms of $\bf{x}$ and $\bf{y}$?
 
By writing $\overrightarrow{DG}$ as $\lambda \overrightarrow{DC}$ and $\overrightarrow{BG}$ as $\mu \overrightarrow{BE}$, can you find two expressions for $\overrightarrow{AG}$?

By equating coefficients of $\bf{x}$ and $\bf{y}$, can you find $\lambda$?


Possible extension

Students could explore what happens if a fraction other than $\frac13$ is chosen to divide the sides of the original triangle.

Possible support

Triangle in a Triangle is a more accessible problem on a similar theme.




You may also like

Areas and Ratios

Do you have enough information to work out the area of the shaded quadrilateral?

Napoleon's Hat

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Plane to See

P is the midpoint of an edge of a cube and Q divides another edge in the ratio 1 to 4. Find the ratio of the volumes of the two pieces of the cube cut by a plane through PQ and a vertex.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo