Or search by topic
You might also like to try an addition version of this task.
This activity enables pupils to help to develop their concept of fractions and begin to subtract fractions with the same denominator and denominators that are multiples of the same number. It provides a context within which pupils can explore and reason about properties of fractions.
Begin with a large piece of paper and split this into fractions by repeated halving (as in the first part of the activity). Discuss with pupils the size of the pieces that you're making. Ask children to suggest how you could split the paper in half into two rectangles - there are two ways of doing this at each stage! Stick some of the parts to a fresh piece of paper (as in the second part of
the activity) and ask them to describe what each is (1$\frac{1}{2}$, 1$\frac{1}{4}$, 1$\frac{1}{8}$ and 1$\frac{1}{16}$).
Working in pairs, pupils can then repeat the activity with their own pieces of paper. Then set them the task of doing the additions using their fractions, and recording as many number sentences as they can.
Tell me about the size of this rectangle.
How are you subtracting these two?
How do you know that your solutions are correct?
Could you have chosen a different rectangle to represent that fraction?
Are there other ways of subtracting them?
When pupils have made the 1$\frac{1}{2}$, 1$\frac{1}{4}$, 1$\frac{1}{8}$ and 1$\frac{1}{16}$, they can then make 1$\frac{3}{4}$, 1$\frac{3}{8}$ and 1$\frac{3}{16}$. Then children can see how many subtraction number sentences they can make including those. They could also create different representations for the same subtraction, choosing differently shaped rectangles that represent the same fraction.
Pupils could cut the fractions out of a sheet with the lines already marked (word, pdf).
Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?