Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Opening the Door

Age 14 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions

This resource is part of our Adventures with Complex Numbers collection


In the article Vanishing Roots, we posed the question:
"What if we could have the square root of a negative number?"
and introduced $i$ as a square root of $-1$, so $i^2=-1$.


A complex number has a real part and an imaginary part, for example:

$4+ 2i$,
or $\frac{7}{5} - 3i$,
or $-\sqrt{3} + \pi i$ 

The complex number $a + bi$ has real part $a$ and imaginary part $b$.

In the same way that we use the number line to represent real numbers, we can use a coordinate plane to represent complex numbers. This plane is called the Argand diagram. 



Adding and subtracting complex numbers is just the same as collecting like terms in algebra. For example,

$(4 + 2i) + \left(\frac{7}{5} - 3i \right) = \frac{27}{5} - i$
and
$(4 + 2i) - \left(\frac{7}{5} - 3i \right) = \frac{13}{5} + 5i$.


We have created the GeoGebra interactivity below for you to explore the questions that follow.




Use the Geogebra interactivity to find some pairs of complex numbers whose sum is a real number. What do you notice?
Can you explain it algebraically?

Use the Geogebra interactivity to find some pairs of complex numbers whose sum is an imaginary number. What do you notice?
Can you explain it algebraically?

In general, what would you need to add to $a + bi$ to get a real number?  Or to get an imaginary number?

Now that you've been introduced to the world of complex numbers, you might like to start Strolling Along.

 

You may also like

Roots and Coefficients

If xyz = 1 and x+y+z =1/x + 1/y + 1/z show that at least one of these numbers must be 1. Now for the complexity! When are the other numbers real and when are they complex?

Target Six

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

8 Methods for Three by One

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo