Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage
Age 16 to 18
Article by Alex Goodwin and Neil Donaldson

Published 1998 Revised 2009

Why Stop at Three by One

In this article Alex and Neil from Madras College give a generalisation of the Three By One problem. See also the article by the same authors, 8 Methods for 'Three by One' which, as the title suggests, brilliantly solves the same problem using 8 different topics in mathematics thus exemplifying the unity of the subject.




Diagram of rectangle
Given a rectangle of dimensions 1 by $n$, for each angle, $\alpha_m$ where $m$ is a positive integer, are there two other angles $\alpha_p$ and $\alpha_q$ whose sum is equal to $\alpha_m$?
Now \begin{eqnarray} \alpha_m & = & \tan^{-1}(1/m)\\ \alpha_p & = & \tan^{-1}(1/p)\\ \alpha_q & = & \tan^{-1}(1/q) \end{eqnarray} Using an exhaustive search for each $m$ from 1 to 12 the $(p,q)$ which satisfy this are:

1 2 3 4 5 6 7 8 9 10 11 12
( p , q ) pairs (2,3) (3,7) (4,13) (5,21) (6,31) (7,43) (8,57) (9,73) (10,91) (11,111) (12,133) (13,157)
(3,2) (5,8) (7,18) (9,32) (13,21) (11,50) (13,72)
(12,17)

Now, using the tan angle sum formula: \begin{eqnarray} \alpha_m = \alpha_p + \alpha_q & \Rightarrow &\tan^{-1}(1/m)= \tan^{-1}(1/p)+ \tan^{-1}(1/q)\\ & \Rightarrow &\tan(\tan^{-1}(1/m))= \tan(\tan^{-1}(1/p)+ \tan^{-1}(1/q))\\ & \Rightarrow & {1\over m} = {(1/p)+ (1/q)\over 1 - (1/pq)}\\ & \Rightarrow & {1\over m} = {p + q \over pq - 1}\\ & \Rightarrow & q = {mp + 1 \over p - m} \end{eqnarray} If $p$ and $q$ satisfy this diophantine equation then these will be solutions to the above question for $\alpha_m$.

Conjecture 1:

For all $m$ there exists at least one solution where $p = m + 1$.

Proof:

To find a solution, use: $$q = {mp+1\over p - m}.$$ When $p = m+1$ $$q = m^2+ m +1.$$ Since $p$ and $q$ are integers there are two angles in the extended diagram which add up to $\alpha_m$.

You may also like

Absurdity Again

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Ball Bearings

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo