Or search by topic
Published 1998 Revised 2009
In this article Alex and Neil from Madras College give a generalisation of the Three By One problem. See also the article by the same authors, 8 Methods for 'Three by One' which, as the title suggests, brilliantly solves the same problem using 8 different topics in mathematics thus exemplifying the unity of the subject.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
( p , q ) pairs | (2,3) | (3,7) | (4,13) | (5,21) | (6,31) | (7,43) | (8,57) | (9,73) | (10,91) | (11,111) | (12,133) | (13,157) |
(3,2) | (5,8) | (7,18) | (9,32) | (13,21) | (11,50) | (13,72) | ||||||
(12,17) |
If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.
Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?