Or search by topic
As shown in the diagram the largest section shaded has area of $\frac12$ in respect to the square. The second is exactly $\frac14$ of the first; the third is also exactly $\frac14$ of the second, and so on.

This shows the outer ring of the pattern, in which there are two pink squares and one blue square. Since all the squares have the same area, the blue square is $\frac13$ of the total area. The same will be true for each ring added inside, therefore $\frac13$ of the overall pattern is blue.
We can check this again by summing our geometric sequence to infinity: $\dfrac{\frac14}{1-\frac14}=\frac13.$
This shows the outer ring of the pattern, in which the total blue area is $\frac6{24} = \frac14.$ The same will be true for each ring added, therefore a quarter of the overall pattern is blue.A circle is inscribed in an equilateral triangle. Smaller circles touch it and the sides of the triangle, the process continuing indefinitely. What is the sum of the areas of all the circles?
P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?
The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design...