Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Triangle in a Square

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
 

Triangle in a Square

This task is best done with at least one other person so you can talk through your ideas with someone else.

In the interactivity below, you can click through a series of mathematical statements made by Badger.

When each statement is revealed, your challenge is to decide whether or not it is true and why.
Talk to someone else about your thinking. Mathematicians don't like to take your word for it, they like to see a watertight chain of reasoning that covers all possibilities. Has Badger provided that?

If you are happy with a statement, you can click on 'OK' and the next statement is shown.

If you click on 'Pause' you have an opportunity to see some other children's thinking, which might help you form your own mathematical argument. Clicking on any of the examples of children's thinking will reveal Badger's response.

We would love to hear about your reasoning at each step. Can you use what you know about number and calculations to put together a watertight chain of reasoning that would convince a mathematician?

And perhaps you could create your own series of statements like this which includes some reasoning which isn't quite right? If you send us your statements, you may see them appear as an interactive task on NRICH!

Why do this problem?

The idea of this task is to give children the opportunity to critique a chain of reasoning. Having this experience will help learners to appreciate what constitutes watertight mathematical reasoning, so they can create their own proofs using words (and images, where appropriate).

This particular example of flawed reasoning also gives learners the chance to deepen their understanding of properties of 2D shapes.

The task An Easy Way to Multiply by 10? offers an identical structure but in the context of place value and calculation.

Possible approach

You may like to begin with a non-mathematical example of flawed reasoning:

Penguins are black and white.
Some old TV shows are black and white.
Therefore some penguins are old TV shows.

Give the class chance to talk in pairs about what is wrong with this, and use it as a springboard to introduce the task. Explain that being able to reason logically is a key skill for a mathematician, and the interactivity is going to give them the chance to 'unpick' someone else's reasoning.

Show the interactivity on the screen or whiteboard, with the Badger's first statement 'A triangle has 3 sides' showing. Invite learners to talk in pairs about whether they think that is true, and crucially, how they would use their mathematical knowledge to convince a mathematician that it was true, or not. Make sure everyone has access to a range of resources but try not to steer them in their choice.

Draw the whole class together to share ideas. If they are struggling to offer suggestions that convince you, click on the 'Pause' button and then reveal some other children's thinking. Do any of these examples give them a starting point? Which examples are not so helpful and why? Clicking on a particular example of children's thinking reveals Badger's response.

Continue in this way, giving everyone chance to consider each statement in turn. Only move on to the next statement when the class has a watertight mathematical argument to support or refute the previous one. In some cases, learners will come up with different chains of reasoning, not necessarily those in the examples, and that is fantastic. The key point is that the logic must be interrogated so that the class is satisfied it is correct.

Key questions

How do we know that statement is true (or not true)?
How could we check whether that statement is true (or not true)?
Are you sure that [this] follows on from [that]? 

Possible support

Having a range of resources available, including access to pencils/paper/whiteboards/pens, will support all learners to access this task. Sharing the children's thinking built into the interactivity will help those who are struggling.

Possible extension

Diagonally Square offers learners the chance to create their own proof, but also includes a proof sorter, which will scaffold their thinking and help them appreciate the key features of a proof.

You may also like

Number Sandwiches

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Add 3 Dice

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do this?

Online

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo