Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage
Age 16 to 18
Article by Sue Liu

Published 2001 Revised 2008

Incircles Explained



The largest circle which fits inside a triangle just touching the three sides of the triangle is called the inscribed circle or incircle. This article is about triangles in which the lengths of the sides and the radii of the inscribed circles are all whole numbers. Following on from the problem Incircles (February 2000) about right angled triangles we now find similar results for isosceles triangles.

Before you read on, can you find the radius of the inscribed circle of the triangle with sides of lengths 3, 4 and 5 units and then find the radius of the inscribed circle of the triangle with sides of lengths 5, 12 and 13 units? These numbers are Pythagorean triples, the triangles are right angled, the inscribed circle of the first has radius 1 unit and the second has radius 2 units. So can we find a right angled triangle with incircle of radius 3 units (or any other whole number) whose sides are a primitive Pythagorean triple? You'll find the answer to this question here .

The solution to the 'Incircles' problem shows that, for any circle whose radius is a whole number k, we are guaranteed at least one right angled triangle containing this circle as its inscribed circle where the lengths of the sides of the triangle are the a primitive Pythagorean triple:

\begin{eqnarray} a&=&2k(k+1)\\ b&=&2k+1\\ c&=&2k^2+2k+1\\ \end{eqnarray}

It is certainly possible to construct triangles with sides a, b and c which give integer value to the incircle radius, but which are not a Pythagorean triple. One such is the isosceles triangle with sides 10, 10 and 12.


It is formed by putting two triangles back to back whose sides are given by the Pythagorean triple 6, 8, 10. As in the solution to the original problem, the radius r of the incircle is found by splitting the triangle into three and finding its area

$$\Delta = ({1\over 2}ar +{1\over 2}br +{1\over 2}cr)$$. Hence
\begin{eqnarray} r &=& {2\Delta \over a+b+c}&&\\ &= &{2\times (12 \times 8)/2 \over 10+10+12}\\ &=& {96/32 = 3} \end{eqnarray}

Another such triangle is the 39, 39, 30 triangle which is formed from two 39, 15, 36 triangles (a 5, 12, 13 triangle enlarged by a factor of 3). The inradius in this case is 10.

For a general case, take two triangles 'back to back' with sides given by the primitive Pythagorean triple with m=x+1, n=x.


The radius of the incircle is given by:

\begin{eqnarray} r & = & {2 \Delta \over a+b+c}& \\ & = & {2(m^2-n^2)\times 2mn\over 2(m^2+n^2)+2(m^2-n^2)} \\ & = & {4mn(m^2-n^2) \over 4m^2} \\ & = & {n(m^2-n^2)\over m}\\ & = & {x((x+1)^2-x^2) \over x+1} \\ & = & {x(2x+1)\over x+1} \end{eqnarray}

As x, x+1 and 2x+1 are all relatively prime, if we enlarge the triangle by a factor x+1 taking m=(x+1)(x+1) and n=x(x+1) then the radius of the incircle of the new triangle will be the whole number

$ r=x(x+1)(2x+1).$

As an example, for x=1, m=4, n=2, the isosceles triangle has sides of lengths 20, 20 and 24 (made up of two right angled triangles with sides of length 20, 16 and 12) and the inscribed circle has radius 6 units.

For another example take x=2, m= 9, n=6, then the isosceles triangle has sides of lengths 117, 117 and 90 (made up of two right angled triangles with sides of length 117, 108 and 45) and the inscribed circle has radius 30 units.

What happens for scalene triangles?


You may also like

Baby Circle

A small circle fits between two touching circles so that all three circles touch each other and have a common tangent? What is the exact radius of the smallest circle?

Circles Ad Infinitum

A circle is inscribed in an equilateral triangle. Smaller circles touch it and the sides of the triangle, the process continuing indefinitely. What is the sum of the areas of all the circles?

Kissing

Two perpendicular lines are tangential to two identical circles that touch. What is the largest circle that can be placed in between the two lines and the two circles and how would you construct it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo