Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Domino Square

Age 7 to 11
Challenge Level Yellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Ethan, Texas, Andrew from Bandung Independent School in Indonesia wrote:

First, we tried to make 8 on one side of the square, but that didn't work out because the other sides couldn't be 8. We tried swapping dominoes around a few times, but still one side wouldn't add up to 8.

Then, we realized we could flip the dominoes around. The side that was 8 could stay 8, and that helped us to build the other sides.

Working as a group, we solved it quickly! Each one of us could solve one part, and we helped each other put the square together. We were faster than the teacher was!


Jack from St Gregory's school wrote:

I put the higher value dominoes in the middle of each arm then fitted the others around, adjusting using the pieces in the corners.



Cordelia, Esha and Mya from North London Collegiate School sent in their solution:

Here is our submission for dominoes that we did in our maths club:

  

Rihanna and Areebah from Gallions Mount School in Greenwich wrote:

First we got rid of the dominoes with the bigger numbers.  Double-3 was the biggest one we put it in a row with dominoes with small numbers. 
The dominoes with the blanks or ones were in the corners. 
We checked that we hadn't used doubles [I think this means more than one of the same domino] by cutting out the dominoes to make sure we had used all the dominoes.



 
Andrew and Michael from Old Earth Primary, and Sam, Harry, Molly and Callum from St Nicolas C of E Junior School, Newbury started this challenge in the same way. Here is what Sam and Harry said:

Sam and I, Harry, counted all the dots on the double-3 down dominoes, so we got 30. But we needed 8 dots on each row and 8 x 4 = 32.
So we knew we had to put 2 dots in the corners because the dots in the corners count double because they are in two rows.

Andy and Michael expanded a bit on this:

All the corners must add up to 2, which is either 0, 0; 0, 2 or 0, 0; 1, 1.

In other words, the dots in the four corners must make a total of 2 dots. The only ways to have a total of 2 dots is by having one corner with 2 dots and the others all blank, or two corners blank and two with one dot.

Sam and Harry found this solution which had 2 dots in one corner and the other corners blank:



Thank you for all your contributions. I hope you'll send some again in the future.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Roll These Dice

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

4 Dom

Use these four dominoes to make a square that has the same number of dots on each side.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo