Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

More Adventures with Modular Arithmetic

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Olivia from Roedean in the UK tried different values of $x$ to solve the equations $3x \equiv 1 \text{ mod } 7$ and $3x \equiv b \text{ mod } 7$:

Mahdi from Mahatma Gandhi International School in India used the rules proved earlier in the problem:

For the equation $6x \equiv b \text{ mod } 7$, Olivia wrote:

Mahdi wrote:

Since $7$ is prime, for every value of $a$ and $b$, there is a unique solution for $x$ in the equation $ax\equiv b \text{ mod 7}$

For the equations $4x \equiv b \text{ mod } 10$ and $ax \equiv b \text{ mod } 10$, Olivia wrote:

To find numbers that solve $4x \equiv b \text{ mod } 10$, we make a table again

Mahdi wrote:

The problem that Mahdi mentions is Stars. Olivia also used the interactivity to explain how to choose possible values of $a$:

Considering the proof that, when $A \equiv a \text{ mod }n$ and $B \equiv b \text{ mod }n$ it is always true that $AB \equiv ab \text{ mod }n$, Amy asked whether this proof could be adapted to find which values of $a$ and $b$ give solutions to the equation $ax \equiv b \text{ mod }n$.

Since the proof shows that the first rule is true for all $a$ and $b$, but later we want to find the specific values of $a$ and $b$ which give solutions, one cannot be adapted easily to give the other. However, a similar argument can be used to demonstrate which values of $a$ and $b$ will work for each $n$.

This is linked to Mahdi's first method. Consider applying Mahdi's first method to $4x\equiv b \text{ mod 10}$:

$4x \equiv 2\text{ mod 10} $
$\Rightarrow 4x \equiv 12\text{ mod 10}$
$\Rightarrow x  \equiv 3\text{ mod 10}$

However
$4x \equiv 1\text{ mod 10} $
$\Rightarrow 4x \equiv 11\text{ mod 10}\equiv 21,31, 41, 51, ...\text{ mod 10}$
And none of those numbers are divisible by $4$.

Can you generalise this?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo