Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Euler Meets Schlegel

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

You might like to work on the problem Network Trees first.

A network consists of points (vertices) and lines between them (edges).  A planar network is one where the edges do not cross each other, or which can be redrawn so that the edges do not cross. A connected network is one where you can travel to any vertex to any other vertex along the edges of the network.

A connected planar network (which has been redrawn if necessary so that edges do not cross) splits up the plane in which it lies into regions.  The picture below shows a network which is dividing the plane into 6 regions (the space "outside" or "around" the network is counted as a region).

How many vertices, regions, and edges are there for this network?

There are 7 vertices, 6 regions, and 11 edges.


Draw some different connected planar networks and count the number of 
vertices (V), edges (E) and regions (R).
Can you find a rule connecting V, R and E ? (known as Euler's formula)
Can you explain why the rule works?

Consider what happens as you add an extra edge to the network - how does this change the number of regions and/or vertices?

Schlegel Diagrams

This result for networks can also be applied to polyhedra.  We can represent every polyhedron as a network using something called a Schlegel diagram.  Consider a cube - we can imagine cutting a hole in a face, and then opening out this cut face and flattening the cube out (imagine the cube is made out of a flexible material so that we can stretch and manipulate it). 

The resulting network has the same number of vertices and edges as the cube, and the number of regions in the network is the same as the number of faces of the cube.

For a triangular prism, we can consider cutting into a triangular face or into one of the rectangular faces, as shown below:

Draw Schlegel diagrams for each of these situations and some more polyhedra of your choice.  
Check that the relationship you found between V, R and E still holds for these situations. 

Extension

Draw a Schlegel diagram for a cube with an indent in one face (like the one below).  It might be easiest to imagine cutting open the face opposite the indent.  

Can you explain why you do not get the same relationship between V, E and R? 

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo