Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Frosty the Snowman

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

This version of the problem is almost identical to Frosty is Melting!, but here there is a rationale for why the radius decreases as it does. 

There are some possible starting points in the Getting Started section.

Here are word and pdf versions of the problem.

 

There appear to be at least three different versions of this question!

Version 1 - original STEP question from 1991

Frosty the snowman is made from two uniform spherical snowballs, of initial radii $2R$ and $3R.$ The smaller (which is his head) stands on top of the larger. As each snowball melts, its volume decreases at a rate which is directly proportional to its surface area, the constant of proportionality being the same for both snowballs. During melting each snowball remains spherical and uniform. When Frosty is half his initial height, find the ratio of his volume to his initial volume.

If $V$ and $S$ denote his total volume and surface area respectively, find the maximum value of $\dfrac{\mathrm{d}V}{\mathrm{d}S}$ up to the moment when his head disappears.

Version 2 - Stephen Siklos' "Advanced problems in Mathematics" 2008 edition

Frosty the snowman is made from two uniform spherical snowballs, of radii $2R$ and $3R.$ The smaller (which is his head) stands on top of the larger. As each snowball melts, its volume decreases at a rate which is directly proportional to its surface area, the constant of proportionality being the same for both snowballs. During melting, the snowballs remain spherical and uniform. When Frosty is half his initial height, show that the ratio of his volume to his initial volume is 37 : 224.

Let $V$ and $h$ denote Frosty's total volume and height at time $t$. Show that, for $2R <h \le 10R$, $$\dfrac{\mathrm{d} V}{\mathrm{d} h}=\frac{\pi} 8 (h^2 + 4R^2)$$

and derive the corresponding expression for $0 \le h < 2R$.

Sketch $\dfrac{\mathrm{d} V}{\mathrm{d} h}$ as a function of $h$ for $4R \ge h \ge 0$.  Hence give a rough sketch of $V$ as a function of $h$.

Version 3 - Stephen Siklos' "Advanced problems in Mathematics" 2015 edition, and 2019 edition

Frosty the snowman is made from two uniform spherical snowballs, initially of radii $2R$ and $3R.$ The smaller (which is his head) stands on top of the larger. As each snowball melts, its volume decreases at a rate which is directly proportional to its surface area, the constant of proportionality being the same for each snowball. During melting, the snowballs remain spherical and uniform. When Frosty is half his initial height, show that the ratio of his volume to his initial volume is 37 : 224.

What is this ratio when Frosty is one tenth of his initial height?

 

This problem is one of a collection designed to develop students' carbon numeracy; we hope it will encourage students to think about the issues surrounding climate change.  You can find the complete collection here.

 

You may also like

Curvy Equation

This problem asks you to use your curve sketching knowledge to find all the solutions to an equation.

Digital Equation

Can you find a three digit number which is equal to the sum of the hundreds digit, the square of the tens digit and the cube of the units digit?

Euler's Totient Function

How many numbers are there less than $n$ which have no common factors with $n$?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo