Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Adding Odd Numbers

Age 11 to 16
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

 

The sum of the first three odd numbers is $1+3+5 = 9$

What are the first four odd numbers?  What is the sum of the first four odd numbers?

The first four odd numbers are $1$, $3$, $5$ and $7$. The sum of these is $1+3+5+7=16$.


What is the sum of the first five odd numbers?
What is the sum of the first two odd numbers? 
What if we only have the first odd number in the sum?
What is the sum of the first six, or ten odd numbers?
Do you notice anything special about your results?

Can you predict what the sum of the first $100$ odd numbers will be?

The sum of the first $100$ odd numbers is $10,000$

Can you predict what the sum of the first $n$ odd numbers will be?

Mathematicians aren't usually satisfied with a few examples to convince themselves that something is always true, and look to proofs to provide rigorous and convincing arguments and justifications.

Can you prove that the sum of the first $n$ odd numbers is $n^2$?

Below is a proof that has been scrambled up.
Can you rearrange it into its original order?


 

Click on student solutions to see some different proofs that students submitted.

 

Extension:

Can you show diagrammatically that the sum of the first $n$ odd numbers is $n^2$?

You can try using Proof by Induction to prove the same result in the problem Adding Odd Numbers (part 2).

 

We are very grateful to the Heilbronn Institute for Mathematical Research for their generous support for the development of this resource.

You may also like

Calendar Capers

Choose any three by three square of dates on a calendar page...

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo