Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

396

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Student Solutions

The article on divisibility tests is very helpful when solving this problem.

  • Let the number be 3 a 1 b 4 c 0 d 92 where a, b, c and d are 5, 6, 7 and 8 in any order.
  • 396 is the product 4 x 9 x 11 so if the number is divisible by all of 4, 9 and 11 then it must be divisible by 396.
  • Since the last 2 digits are 92, the number must be divisible by 4 (whatever the order of the inserted digits), because 92 is divisible by 4.
  • If the digit root is 9, then the number is divisible by 9. The digit sum is 3 + a + 1 + b + 4 + c + 0 + d + 9 + 2. Since the order of a + b + c + d does not matter then it is always equal to 26. This makes the digit sum 3 + 1 + 4 + 0 + 9 + 2 + 26 which is equal to 45. The digit root is now 4 + 5, which is equal to 9, thus meaning that the number is divisible by 9, no matter what the order of 5, 6, 7, 8.
  • Now, using the divisibility test for 11:
    2 - 9 + d - 0 + c - 4 + b - 1 + a - 3 = a + b + c + d - 15, and since in any order, a + b + c + d = 26 this is equal to 26 - 15 = 11 . This means that the number must be divisible by 11, no matter what the order of the digits 5, 6, 7, 8.
  • Finally, since the number is divisible by 4, 9 and 11, no matter what the order of the inserted digits, then it must always be divisible by 396! This means that the probability that the answer is a multiple of 396 is equal to 1.

An alternative solution to this was to try all the numbers one at a time. This was tried successfully by Lucy and Sarah from Archbishop Sancroft High School.


You may also like

N000ughty Thoughts

How many noughts are at the end of these giant numbers?

Mod 3

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Novemberish

a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number. (b) Prove that 11^{10}-1 is divisible by 100.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo