Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Rots and Refs

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

Bob sent us his solution:

Firstly I multiplied the matricies to find the new point. Using the trigonometric identities to simplify, I got the new point as $(r\cos(\theta+\phi),r\sin(\theta+\phi))$. This meant that we had rotated the point $\phi$ degrees anticlockwise.

To prove that $OX = OX' = p$, I drew a line XX', which intersects and is parallel to the line $y=x\tan\theta$ (call this point of intersection D). But $DX'=DX$ and so $ODX$ and $ODX'$ are two right-angled triangles of the same size, so $OX=OX'=p$. By the same argument I drew lines $OP$ and $OP'$, and so got right-angled triangles again, so $OP=OP'=q$.

By looking at the right-angled triangle $OAX'$, with the angle at $O$ being $2\theta$, I knew that: $$\cos2\theta=\frac{OA'}{OX}=\frac{OA'}{p}$$ and so $OA'=p\cos2\theta$.

I then looked at the right-angled triangle $X'BP$, and since the angle at $X$ is $2\theta$, $BP'=q\sin2\theta$. By applying Pythagoras' Theorem to the right-angled triangle $OAX$,$AX'=p\sin2\theta$. Finally, applying Pythagoras' Thereom to the triangle $X'BP'$ I found $BX'=q\cos2\theta$.

Looking at the change in X co-ordinates, I found $P'=(p\cos2\theta+q\sin2\theta, \; p\sin2\theta-q\cos2\theta)$.

So the matrix for the reflection would be:
\mathbf{T}= \left( \begin{array}{cc} cos 2\theta & sin2\theta\\ sin2\theta & -\cos2\theta \end{array} \right)


You may also like to look at the problem ' The Matrix ' from July 2003 and its solution for an explanation of how a transformation of the plane is given by a matrix and how you can find the image of a point by multiplying its vector by the matrix of the transformation.

You may also like

8 Methods for Three by One

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

Reflect Again

Follow hints to investigate the matrix which gives a reflection of the plane in the line y=tanx. Show that the combination of two reflections in intersecting lines is a rotation.

Flipping Twisty Matrices

Investigate the transformations of the plane given by the 2 by 2 matrices with entries taking all combinations of values 0, -1 and +1.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo