Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Reflect Again

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions


Use the diagram to prove the double angle formula, where $t=\tan \theta$: $$\tan2\theta = {2t\over {1-t^2}},\quad \sin2\theta = {2t\over {1+t^2}},\quad \cos2\theta = {{1-t^2}\over {1+t^2}}$$
Tan

The point $P'=(p',q')$ is the image of the point $P=(p,q)$ after reflection in the line $y=mx$. To find $(p',q')$ use the fact that the midpoint of $PP'$ is on the line $y=mx$ and the line segment $PP'$ is perpendicular to the line $y=mx$ and show that $$p'=p\cos2\theta + q\sin2\theta,\ q'=p\sin2\theta - q\cos2\theta\quad (1)$$ where $m=\tan\theta$. Hence establish another proof that the matrix

$$T_2= \left( \begin{array}{cc} \cos 2\theta &\sin2\theta \\ \sin2\theta &-\cos2\theta \end{array} \right) $$

gives a reflection in the line $y=x\tan\theta$. The point $P''=(p'',q'')$ is the image of the point $P'$ after reflection in the line $y=x\tan\phi$. Apply the transformation $$T_2' = \left(\begin{array}{cc} \cos 2\phi &\sin2\phi \\ \sin2\phi & -\cos2\phi\end{array}\right)$$ to the point $P'=(p',q')$ to find the coordinates of the point $P''$ in terms of $p, q, \theta$ and $\phi$. Hence show that the combination of two reflections in distinct intersecting lines is a rotation about the point of intersection by twice the angle between the two mirror lines. What is the effect of the two reflections if the lines coincide (i.e. $\theta=\phi$)?

You may also like

8 Methods for Three by One

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

Rots and Refs

Follow hints using a little coordinate geometry, plane geometry and trig to see how matrices are used to work on transformations of the plane.

Flipping Twisty Matrices

Investigate the transformations of the plane given by the 2 by 2 matrices with entries taking all combinations of values 0, -1 and +1.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo