Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Dodecahedron

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

There are two interpretations of this problem, the shortest route between opposite faces of the dodecahedron going across the outside of the solid and the shortest route boring a hole through the middle.


While few tackled this challenging problem, Luke, of Madras College found the shortest distance through the centre. In his solution he used the centres of three spheres: the circumsphere that passes through all the vertices of the dodecahedron, the midsphere touching the midpoints of the edges, and the insphere which touches the opposite faces of the dodecahedron at their centres. Luke's answer is 2.23 approximately. Before you look at Luke's solution here you might like to try to try it for yourself.


On the surface this must be the distance between A and B on the net of the solid.


Let the lengths of the edges be 2 units.
AB = 2 x AO
AO = ON + AN
and AN = AP + PN.

Working to 4 decimal places,
AP = 1/cos 54 ° = 1.7015
PN = 2 sin72 ° = 1.9021
NM = 2 cos72 ° = 0.6180

AN = 1/cos54 ° + 2sin72 ° = 3.6034
NO = 2cos72 ° + 1 = 1.6180

AO ² = (1.6180) ² + (3.6034) ²
AO = 3.9499 AB = 7.8999

You may also like

Degree Ceremony

Can you find the sum of the squared sine values?

Logosquares

Ten squares form regular rings either with adjacent or opposite vertices touching. Calculate the inner and outer radii of the rings that surround the squares.

Ball Bearings

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo