Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Dirisibly Yours

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Alan from Madras College, St Andrew's, Scotland and Alexander from Shevah-Mofet School, Israel both used induction to prove that $5^{2n+1} + 11^{2n+1} + 17^{2n+1}$ is divisible by $33$ for all non-negative integer values of n . This is Alexander's proof.

Let us assume that $p =2n+1$, which means that p is a positive odd number. In that case we need to prove that $5^p+11^p+17^p$ divides by $33$.

Obviously if $n=0$, then $p=1$ and $5+11+17=33$ divides by $33$. Let's assume that $5^p +11^p +17^p$ divides by $33$ and prove that $5^{p+2} + 11^{p+2} + 17^{p+2}$ divides by $33$ which means we need to prove that $25 \times5^p+ 121 \times11^p + 289 \times17^p$ divides by $33$.

Since we know that $5^p +11^p +17^p$ divides by $33$, we can subtract it $25$ times and we'll need to prove that $96 \times11^p+ 264 \times17^p$ divides by $33$. Now $264 = 8 \times33$ which means that $264 \times17^p$ divides by $33$. All that is left to prove is that $96 \times11^p$ divides by $33$ and we're done. As $96$ divides by $3$ and $11^p$ divides by $11$ ( $p > 0$) so $96 \times11^p$ divides by $33$. We've proven that if $5^p +11^p +17^p$ divides by $33$ then $5^{p+2} + 11^{p+2} + 17^{p+2}$ also divides by $33$ and we've checked that it is correct for $ p=1$. We have proved inductively that $5^{2n+1} + 11^{2n+1} + 17^{2n+1}$ is divisible by $33$ for all non-negative integer values of $n$ .

This can also be proved using modulus arithmetic as follows:

$5^p + 11^p + 17^p \equiv (-6)^p + 0^p + 6^p \equiv 0$ (mod 11)

because $p$is odd, and $5^p + 11^p + 17^p \equiv 2^p + 2^p + 2^p \equiv 3 x 2^p \equiv 0$ (mod 3).

For more discussion of solutions to this problem see the article.



You may also like

Purr-fection

What is the smallest perfect square that ends with the four digits 9009?

Old Nuts

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Mod 7

Find the remainder when 3^{2001} is divided by 7.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo