Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Old Nuts

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

Four people are shipwrecked and there are only coconuts to eat. Being prudent they collect all the coconuts they can find and weary from their work fall asleep.

In the night one of the castaways wakes up and secretly divides the coconuts into four equal piles, she hides her share and throws to the monkeys the three that were left over before putting all the remaining nuts back into one pile.

Later another of the castaways wakes up and she too secretly divides the coconuts into four equal piles, she hides her share and throws to the monkeys the three that were left over before putting all the remaining nuts back into one pile.

Later still, yet another of the castaways wakes up and she too secretly divides the coconuts into four equal piles, hides her share and throws to the monkeys the three that were left over before putting all the remaining nuts back into one pile.

Just before morning the last castaway wakes up and she too secretly divides the coconuts into four equal piles, hides her share and throws to the monkeys the three that were left over before putting all the remaining nuts back into one pile.

Next morning with a much reduced pile the four castaways find they can share out equally all the coconuts that are left!

What is the least number of coconuts they could have started with?

Extension: Solve the generalised problem with n castaways, dividing the pile into n shares, hiding one share and throwing m coconuts to the monkeys each time.

You may also like

Some Cubes

The sum of the cubes of two numbers is 7163. What are these numbers?

Em'power'ed

Find the smallest numbers a, b, and c such that: a^2 = 2b^3 = 3c^5 What can you say about other solutions to this problem?

Sixational

The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo