Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Rational Round

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

The following solution came from Alan of Madras College, St Andrew's.



Substituting

$$ x = \frac{2k}{k^2 + 1}, y = \frac{k^2 - 1}{k^2 + 1}$$

we get

$$\eqalign{ x^2 + y^2 &= \left(\frac{2k}{k^2 + 1}\right)^2 + \left(\frac{k^2 - 1}{k^2 + 1}\right)^2 \\ \; &= \frac{(2k)^2 + (k^2 - 1)^2}{(k^2 + 1)^2} \\ \; &= \frac{4k^2 + k^4 - 2k^2 + 1}{(k^2 + 1)^2} \\ \; &= \frac{(k^2 + 1)^2}{(k^2 + 1)^2} \\ \; &= 1.}$$

So for every integer $k$ the point $(x,y)$ lies on the circle $x^2 + y^2 = 1$. (Note $(k^2 + 1) \neq 0$.)

Assume that it is possible for rational points to lie on the circle $x^2 +y^2 = 3$. For example $$\left(\frac{m}{n}\right)^2 + \left(\frac{k}{l}\right)^2 = 3$$ where $m$, $n$, $k$, $l$ are integers, $n$, $l \neq 0$, gcd $(m,n)$ = 1, gcd $(k,l)$ = 1. This can be rearranged to give $(ml)^2 + (kn)^2 = 3(nl)^2$ and hence

$$(ml)^2 + (kn)^2 \equiv 0 \qquad \qquad (\mbox{mod }3).$$

For any integer $q$ the only possibilities are

$$\eqalign{ q &\equiv 0 (\mbox{mod }3) \Rightarrow q^2 \equiv 0 (\mbox{mod }3) \\ q &\equiv 1 (\mbox{mod }3) \Rightarrow q^2 \equiv 1 (\mbox{mod }3) \\ q &\equiv 2 (\mbox{mod }3) \Rightarrow q^2 \equiv 4 \equiv 1 (\mbox{mod }3)}$$

So the only possible way for $(ml)^2 + (kn)^2 \equiv 0$ (mod 3) is for $(ml)^2 \equiv 0$ (mod 3) and $(kn)^2 \equiv 0$ (mod 3).

Case 1: suppose that $m \equiv 0$ (mod 3). Then $n$ not$\equiv 0$ (mod 3) because gcd $(m,n) = 1$, so that $k \equiv 0$ (mod 3). Then $l$ not $\equiv 0$ (mod 3) because gcd $(k,l)$ = 1. We write $m = 3m_1$ and $k = 3k_1$ where $m_1$ and $k_1$ are integers; then as $(ml)^2 + (kn)^2 = 3(nl)^2$ we have $$3(m_1^2l^2 +k_1^2n^2) = (nl)^2.$$ This shows that $nl \equiv 0$ (mod 3) which is a contradiction.

Case 2: suppose that $m$ not$\equiv 0$ (mod 3). Then $l \equiv 0$ (mod 3) and by the same reasoning as before we reach a contradiction.

Our assumption must be wrong, therefore no rational points lie on the circle $x^2 +y^2 = 3$.

You may also like

Purr-fection

What is the smallest perfect square that ends with the four digits 9009?

Old Nuts

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Mod 7

Find the remainder when 3^{2001} is divided by 7.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo