Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Napoleon's Theorem

Age 14 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

Students can experiment with the interactivty, observe what remains invariant as the inner triangle changes, make a conjecture and then try to prove it.

There are several diffferent ways to prove this result.

One way uses only the Cosine Rule and the area formula for a triangle. It is quite short as it produces a formula that is entirely symmetric in $a, b$ and $c$, the lengths of the sides of the inner triangle, and then uses a symmetry argument to complete the proof. This in itself is a good thing for students to see and be aware of.

An alternative method uses a tessellation with copies of $\Delta ABC$ and three triangles drawn on the sides of $\Delta ABC$. This uses only elementary geometry. There is a second interactivity to aid students in visualising the tessellation and proving the result by this method.

Either of these two methods provide a Stage 4 challenge.

Alternatively you can use vectors or complex numbers (a Stage 5 challenge).

Possible approach

After the students have experimented with the interactivity and made their conjectures, then the teacher can either let them find their own ways of proving the result, or alternatively suggest one of the methods according to what the students know and where practice and further familiarity with a concept might be useful.

Key questions

What do you know about the centroid of an equilateral triangle?

Can you find the distance from the vertex to the centroid of an equilateral triangle.

Can you write the lengths of the segment joining two centroids in terms of the side lengths and angles of the inner triangle?

Can you use a symmetry argument?

Possible support

Learners can use GeoGebra to draw and investigate their own dynamic diagram for this theorem. It is free software and easy to use.
 
The problem Hexi-metry involves the Cosine Rule.
 
 
If you want to use complex numbers then try the problem Complex Rotations.
 
 
 
 
 
 
 
 

Possible extension

 
Try Pythagoras for Tetrahedron

You may also like

LOGO Challenge 5 - Patch

Using LOGO, can you construct elegant procedures that will draw this family of 'floor coverings'?

LOGO Challenge - Triangles-squares-stars

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

LOGO Challenge - Tilings

Three examples of particular tilings of the plane, namely those where - NOT all corners of the tile are vertices of the tiling. You might like to produce an elegant program to replicate one or all of these.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo