Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Three by One

Age 16 to 18
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem ?

In this one problem you meet many important aspects of mathematics. It illustrates how much mathematics is inter-related. It shows the value of not being content to find one solution, but of asking yourself "could I solve this another way?" or "have I found the best method?" It is very satisfying to feel you have somehow got to the very essence of a mathematical idea by looking at it in the right way.

Also this problem provides a good example of how you can generalise from a result that is really a simple case of a much more general result. Are you content just to solve a problem or do you ask yourself "what if ...." and try to find more general results?

Possible approach

You could challenge your class to find as many different methods of solving this problem asposible. You could tell them that one pair of school students found 8 different methods. At some stage of this work you might mention that these two students used respectively sines, cosines, tangents, vectors, matrices, coordinate geometry, complex numbers and pure geometry.

Perhaps your students could work in pairs. They could come to the board and present their solutions to the rest of the class and/or make posters for the classroom wall. You could see collectively how many different methods your class can find.

Key questions

What lengths in the diagram can we find?

What do we know about sines, cosines, tangents, vectors, matrices, coordinate geometry, complex numbers and pure geometry that we can use to prove this result?

How might we generalise this result?

Possible extension

The linked article Why Stop at Three by One? beautifully generalises this result.

You may also like

Flexi Quads

A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?

Tetra Perp

Show that the edges $AD$ and $BC$ of a tetrahedron $ABCD$ are mutually perpendicular if and only if $AB^2 +CD^2 = AC^2+BD^2$. This problem uses the scalar product of two vectors.

Flexi Quad Tan

As a quadrilateral Q is deformed (keeping the edge lengths constnt) the diagonals and the angle X between them change. Prove that the area of Q is proportional to tanX.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo