Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Biggest Enclosure

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Student Solutions

trapezium
Shaun of Nottingham High School and also Ben and Thomas sent in good solutions to this problem. Here is Shaun's solution.

There are three possibilities we must consider, in each one the 'middle' fence (vertical in the diagram ) is one of $p$, $q$ or $r$. Interchanging the horizontal fences either side makes no difference to the area of the shape, it is just being flipped vertically.

Remember the area of a trapezium can be expressed as ${1\over 2}(a+b)h$, where $a$ and $b$ are parallel sides, and $h$ the distance between them.

This means we can express the areas of the three possible shapes as:

$$\frac {1}{2}(p+q)r, \frac {1}{2}(q+r)p, \frac {1}{2}(r+p)q.$$

Let's compare the first two. As $qr> qp$ we have $qr + pr > qp + pr$ and so

$${1\over 2}(p+q)r > {1\over 2}(q+r)p.$$

I hope you can see an identical argument can be used to compare the other pairings of expressions for area, and we end up with:

$${1\over 2}(q+p)r > {1\over 2}(p+r)q > {1\over 2}(r+q)p.$$

So the fences should be arranged with $r$ being the middle one in order to enclose the maximum area.


You may also like

Two Cubes

Two cubes, each with integral side lengths, have a combined volume equal to the total of the lengths of their edges. How big are the cubes? [If you find a result by 'trial and error' you'll need to prove you have found all possible solutions.]

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

Square Mean

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo