Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Take a Message Soldier

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

First of all we need to assign letters to the important variables in the problem.

Let $v$ be the speed of the column.

Let $u$ be the speed of the messenger.

Let $L$ be the length of the column.

We can assume that the messenger travelled at a constant speed because he was ordered to deliver the message and return to his former position "without delay". Assume that the speed $u$ is the messenger's maximum speed which is constant (he does not get tired, for instance). We need to find ${u\over v}$.

When delivering the message, the messenger travels at a speed $u-v$ relative to the column. He travels a distance $L$ relative to the column. Therefore, the time to reach the head of column is $${L\over u-v}\;.$$

When returning to his position, the messenger travels at a speed $u+v$ relative to the column. Again, he travels a distance $L$ relative to the column. Therefore, the time to return to the end of column is $${L\over u+v}\;.$$

While the messenger is carrying out his mission, the end of the column travels a distance $L$.

The time for the column to travel this distance is $${L \over v}\;.$$

The time for the messenger to complete the mission is equal to the time for the column to travel the distance $L$.

$$\begin{eqnarray} {L \over u-v} + {L \over u+v} &=& {L\over v}\\ \Rightarrow {1\over u-v} + {1\over u+v} &=& {1\over v}\qquad\, \mathrm{[divide\ by\ L]}\\ \Rightarrow {v\over u-v} + {v\over u+v} &=& 1\qquad\;\; \mathrm{[multiply\ by\ v]}\\ \end{eqnarray}$$

As stated above, we need to find ${u\over v}$. If we divide top and bottom of the fractions on the left hand side by $v$ and then substitute $x$ for ${u\over v}$, we get the following equation.

$$\begin{align} {1\over x-1} + {1\over x+1} &= 1\\ \Rightarrow  (x+1) + (x-1) &= (x+1)(x-1)\qquad \mathrm{[multiply\ through\ by\ (x+1)(x-1)]}\\ \Rightarrow  2x &= x^2 - 1\qquad\qquad\quad\; \mathrm{[expand\ the\ brackets\ and\ gather\ terms]}\\ \Rightarrow  0 &= x^2 - 2x - 1 \end{align}$$

We now have a quadratic equation, for which we can use the standard formula to solve.

$$\begin{align} x &= \frac{2 \pm \sqrt{4 + 4}}{2}\\ x &= \frac{2 \pm \sqrt{8}}{2}\\ x &= 1 \pm \sqrt{2} \end{align}$$

as $\sqrt{8}$ is equal to $2\sqrt{2}$.

We now have to consider the two possible solutions. The ratio cannot be negative, because the velocity of the messenger is in the same direction as the velocity of the column. This means that the ratio cannot be $1 - \sqrt{2}$. Thus, the ratio of the messenger's speed to that of the column is $x=1 + \sqrt{2}.$

You may also like

Stonehenge

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Escalator

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. ... How many steps are there on the escalator?

Which Twin Is Older?

A simplified account of special relativity and the twins paradox.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo