Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Generally Geometric

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Andy from Clitheroe Royal Grammar School sent us his work on this problem. He's given us two methods; can you see why he prefers the second one?

We begin by summing the series

$x+2x^2+3x^3+4x^4+\cdots$

$x$ + $x^2$ + $x^3$ + $x^4$ + $\cdots$
+ $x^2$ + $x^3$ + $x^4$ + $\cdots$
+ $x^3$ + $x^4$ + $\cdots$
+ $\cdots$


In other words, we are writing it as a sum of geometric series!

Now, let us factorise the above sum as follows:

$(x + x^2 + x^3 + x^4+\ldots)(1 + x + x^2 + x^3 + x^4+\ldots)$

Wow, a product of geometric series!

We can then take a factor of $x$ out the first bracket to leave us with

$x(1 + x + x^2 + x^3+\ldots)^2$

Using the geometric sum given in the question, this comes to $$x\times \left(\frac{1}{1-x}\right)^2 = \frac{x}{(1-x)^2}$$ __

A similar method could be used for the series $x + 4x^2 + 9x^3 + 16x^4 +\ldots$, factorising it as $(x + 3x^2 + 5x^3 + 7x^4+\ldots)(1 + x + x^2 + x^3 +\ldots)$, then writing the left hand bracket as $(x + x^2 + x^3+\ldots + 2x^2 + 4x^3 + 6x^4+\ldots)$, from which point we can use our previous sum to obtain an answer. Unfortunately this doesn't generalise easily into higher powers, the amount of working needed growing much larger at each stage.

A more elegant solution is differentiation. If we differentiate our first series, we get $1 + 4x + 9x^2 + 16x^3+\ldots + n^2x^{n-1}+\ldots$. Multiplying through by $x$ gives us $x + 4x^2 + 9x^3+\ldots + n^2 x^n+\ldots$, which is the $n^2 x^n$ series we need.

If $x + 2x^2 + 3x^3 + 4x^4+\ldots = x/(1-x)^2$ then $x(d[x + 2x^2 + 3x^3+\ldots]/dx) = x(d[x/(1-x)^2]/dx)$.

But the left-hand side is equal to $x + 4x^2 + 9x^3 + 16x^4 +\ldots$, the sequence we want to sum.

We can resolve the right-hand using the quotient rule, and it comes to $x(1+x)/(1-x)^3$.

__

To take it into higher powers, notice that

$d[x + 4x^2 + 9x^3+\ldots]/dx = 1 + 8x + 27x^2+\ldots$.

Therefore $x d[x + 4x^2 + 9x^3+\ldots]/dx = x + 8x^2 + 27x^3+\ldots$, our next sequence. We can differentiate the previous infinite sum and multiply by $x$ at each stage to get the sum for the next power, and by applying the same process to the closed-form expression, we can obtain a closed-form expression for the next power.

You may also like

Absurdity Again

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Ball Bearings

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo