Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cube Net

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Congratulations Andrei, School No. 205, Bucharest, Romania on another excellent solution.

1. I observed that a cube could be represented by the diagram below, that keeps all edges and vertices (the lengths are not important). schlaefli diagram for cube
From the beginning I observe that one could start from any vertex in a cube and there are $8$ vertices.

From any vertex there are three possible routes. I shall consider the routes starting from vertex $A$.

Below are written all the possible combinations I found starting with the edge $AD$:

Path Circuit
A-D-C-B-F-E-H-G No
A-D-C-B-F-G-H-E-A Yes
A-D-C-G-H-E-F-B-A Yes
A-D-C-G-F - impossible
A-D-H-E-F-B-C-G No
A-D-H-E-F-G-C-B-A Yes
A-D-H-G-C-B-F-E-A Yes
A-D-H-G-F-E - impossible

I observe that there are $6$ possible paths, $4$ of which are Hamiltonian Circuits.

I have to multiply the number of solutions I obtained. So the total number of solutions is given by $8 \times3 \times6$ that is $144$, and $96$ are Hamiltonian Circuits.

Because all vertices of the cube are indistinguishable, there are $18$ solutions, and $12$ Hamiltonian Circuits.

2. Set $\{a, b, c\}$ has the following subsets: $\{a, b, c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a\}, \{b\}, \{c\}, \phi $. I observe that they could be arranged so that one subset is connected with $3$ other subsets that differ from the first by only one element, deleted or inserted. These subsets can be positioned on the vertices of a cube.
equivalent orthographic view of cuberelabelled schlaefli diagram
I have verified that each subset is connected with $3$ other subsets, forming a diagram as found before, or, more intuitively, a cube. So, the problem is reduced to the first problem.

The number of sequences is $144$ sequences, or $18$ if the first element of the sequence does not matter.

You may also like

Instant Insanity

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Network Trees

Explore some of the different types of network, and prove a result about network trees.

Magic Caterpillars

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo