Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Network Trees

Age 14 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

A network is a collection of points and lines between the points. The points are called vertices and the lines which connect them are called edges. Each edge has a vertex at each end. 

Here are some possible networks:

A connected network is a network in which we can get from any vertex to any other by travelling along the edges.
A planar network is one which can be redrawn in such a way that no edges cross each other.
A cyclic network is one where there is a closed circuit or loop somewhere in the network.  A network with no closed circuits is an acyclic network.

Describe each of the networks above with the words connected/disconnected, planar/non-planar and cyclic/acyclic.

1. Disconnected, Planar, Acyclic
2. Disconnected, Non-planar, Cyclic
3. Connected, Planar, Cyclic
4. Connected, Planar, Acyclic (note that this can be redrawn in such a way that the edges do not cross)
5. Connected, Planar, Acyclic
6. Connected, Planar, Cyclic

Draw a network which is Disconnected, Planar and Cyclic?

Can you draw a network which is Non-planar and Acyclic?

A network is called a tree if it is connected, planar and acyclic (like networks 4 and 5 above).

Investigate the number of edges in trees with different numbers of vertices.
Can you prove a relationship between the number of vertices in a tree and the number of edges?

What happens to the tree when you add an extra edge?
Remember that the network must not be cyclic.

There are two different trees which have 4 vertices.

Note that the following two trees do not count as different as we can stretch each of them out as a straight line.

How many different trees can you draw with 5 vertices? 

There are three different trees with 5 vertices


The degree of a vertex is the number of edges that meet at the vertex.

Draw all the possible trees with 2, 3 and 4 vertices.
Label the vertices on your drawings with the degree of each vertex. 
Do the same for your trees with 5 vertices.
What can you say about the sum of the degrees of the vertices in trees with 2, 3, 4, 5, ... $n$ vertices?
Can you explain what you have noticed?

How do the number of vertices relate to the number of edges?
How does each edge contribute to the degrees of the vertices?

How many different trees can you draw with 6 vertices?

There are five different ways you can write 10 as the sum of six positive integers:
1, 1, 1, 1, 1, 5
1, 1, 1, 1, 2, 4
1, 1, 1, 1, 3, 3
1, 1, 1, 2, 2, 3
1, 1, 2, 2, 2, 2
One of these combinations produces more than one tree.

How many trees can you draw with 7 vertices?
How can you use your results so far to convince yourself that you have found all of the possible trees?

 

You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo