Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Area L

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem looks more complicated than it is. Students need to interpret the notation and use their understanding of definite integrals as areas under curves to prove a formula graphically. Once they make sense of the formula in terms of a diagram, they can use it to evaluate integrals which might prove challenging to calculate by other means.

Possible approach

Students could sketch a suitable continuous increasing function on paper or whiteboards, and mark on suitable points $a, b, f(a)$ and $f(b)$. Give them time in groups to identify the areas on their graph represented by $\int_{f(a)}^{f(b)} f^{-1}(t) \,dt$, $\int_a^bf(x) \,dx$, $bf(b)$ and $af(a)$.

Once they are convinced that the proof of the formula follows from a diagram, give them the chance to verify the formula for cases they can integrate directly, like $\int_a^b \sqrt{t} \,dt$.

The problem suggests using the formula to evaluate $\int_0^1 \sin^{-1}t \,dt$ but other inverse functions of continuous increasing functions can be used, and it offers good integration practice to allow students to suggest functions of their own to integrate which they can evaluate by other means as a check. It is worth taking the time to discuss the requirement for the function to be increasing between $a$ and $b$, and setting the challenge to find a similar formula for a function which is decreasing.


Key questions

On the graph $y=f(x)$, what is represented by $\int_{f(a)}^{f(b)} f^{-1}(t) \,dt$?
Why does the formula specify that $f(x)$ is increasing?
What could be done if $f(x)$ were decreasing?

Possible extension

Integral Sandwich is another problem where sketching a graph makes the meaning of the integrals much clearer.


Possible support

Sketching some particular inverse functions like $y=\sqrt x$ and marking on numerical values for a and b, then working out the relevant areas might provide a way into this problem.

You may also like

Integral Equation

Solve this integral equation.

Integral Sandwich

Generalise this inequality involving integrals.

Integral Inequality

An inequality involving integrals of squares of functions.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo