Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Fence It

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Why do this problem?

This problem challenges students to work systematically while applying their knowledge of areas of rectangles. It offers opportunities for higher level mathematical thinking (optimising and graphing) in a context that doesn't require sophisticated mathematical content.
This problem could be revisited when students are older and are able to use algebraic techniques (forming quadratic expressions, maximising by completing the square).

Possible approach

This printable worksheet may be useful: Fence It.

"Imagine you had $40$ one-metre sections of fencing, and you wanted to make a rectangular enclosure. On your whiteboards, sketch a possible rectangle you could make that uses all $40$m. Write the area of your rectangle inside."

Tabulate students' responses on the board. Select the largest area that has been found so far: "Is this the largest possible area we can make with $40$m of fencing?" Once the $10$m square with area $100$m$^2$ has been found, "How can we be convinced that a larger area isn't possible?" Give students a few minutes to think about the question in pairs and develop some convincing arguments. Circulate and listen in on conversations to identify which pairs have something worth sharing. Look out for diagram representations similar to this one:



or tables of values like this one:



Bring the class back together and invite any pairs whose interesting insights you noticed to share their thoughts. Use this to write an agreed 'convincing argument' why a square gives the maximum area, modelling the level of rigour that you expect them to come up with in their own justifications later on.

Now set the second problem: "Imagine you had a long wall that you could use as one of the sides of your enclosure, so your $40$ metres of fencing only has to go round three sides of the rectangle. Use the ideas we have shared to work with your partner and find the biggest possible enclosure now. Make sure you have a justification to convince everyone that your area is the biggest possible."

This worksheet has all three parts of the problem on, so you could hand this out to students who finish the second task quickly.

Before the end of the lesson, allow some time for students to present their findings, focussing particularly on their justifications.

 

Key questions

What would the width of the rectangle be if the length is 1m? 2m? 3m? ...
How can I be sure I have found the maximum possible area?

 

Possible support

Share the diagrams above to help students to represent their trial-and-improvement strategies in a clear way that shows how the area changes.

 

Possible extension

Some students may use algebra to represent the scenarios and use graphical methods to find/justify the optimal solution.

Relaxing the straight lines constraint would allow students to consider some circle geometry:
"Could you enclose even greater areas if you had 40m of flexible wire fencing that could fence off curves as well as straight lines?"

 

 

 

 

 

 

 

 

 

Related Collections

  • Working Systematically - Lower Secondary

You may also like

Framed

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of the pictures.

Tilted Squares

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Four or Five

The diagram shows a large rectangle composed of 9 smaller rectangles. If each of these rectangles has integer sides, what could the area of the large rectangle be?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo