Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Stars

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Stars printable sheet
There are printable circles of dots on the NRICH Printable Resources page, under Circle templates > Without central point

 

Draw some stars using the interactivity below.
Choose how many points you would like around your circle
Now choose a starting point and drag to another point. Watch as the pattern continues to travel around the circle...

 

When a circle has 8 dots you can move around the circle in steps of length $1$, $2$, $3$, $4$, $5$, $6$ or $7$.

If you move around the circle in steps of $2$, you miss some points

If you move around the circle in steps of $3$, you visit all the points.

How else can you visit all the points?

When a circle has $9$ dots there are $6$ different step sizes where you visit every point.

Which step sizes allow you to do this?

Now consider $10$ points. Can you find the $4$ different step sizes in which we can visit every point?

Explore what happens with different numbers of points and different step sizes.

How can you work out what step sizes will visit all the points for any given number of points?

Now consider $5$ points. You can visit all the points irrespective of the step size. Which other numbers have this property?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

 

If you would rather work on paper, go to the Printable Resources page to open PDF files of the circles (Circle templates > Without central point)

 

Each PDF file contains 12 identical circles with a specific number of dots. You can select any number of dots from 3 to 24.

 

You may also like

Gaxinta

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Thirty Six Exactly

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Strange Numbers

All strange numbers are prime. Every one digit prime number is strange and a number of two or more digits is strange if and only if so are the two numbers obtained from it by omitting either its first or its last digit. Find all strange numbers.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo